THE U.S. DOT/TSC TRAIN PERFORMANCE SIMULATOR

M.E. Hazel

U.S. Department of Transportation

Research and Special Programs Administration
Transportation Systems Center
Cambridge MA 02142

SEPTEMBER 1978
FINAL REPORT

DOGUMENT IS AVAILABLE TO THE U.S. PUBLIC THMOUGA THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD. VIRGIAIA 22181

Prepared for
US DEPARTMENT OF TRANSPORTATION
FEDERAL RAILROAD ADMINISTRATION Office of Research and Development Hashington DC. 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

PREFACE

Abstract

The purpose of this report is to acquaint interested researchers and potential users with the features of the Train Performance Simulator (TPS) in use at the Transportation Systems Center (TSC) of the U.S. Department of Tramsportation and to provide enough information to assess its usefulness.

The basic simulation program was developed for Missouri Pacific Railroad Company (MoPac) by R.W. Drucker while a graduate student at the University of Ilinois and by staff members of the Industrial Engineering Division of MoPac. It has been extensively modified by TSC to provide for many additional features, particularly relating to electric propulsion and passenger service, as well as to provide more flexible input and output options which take advantage of the capabilities of the TSC DEC system-10 computer system and which reflect the broader needs of the Federal Railroad Administration.

This report is based in part on the User's Manual written by MoPac, but includes much updated, expanded, and revised information applicable to the USDOT/TSC TPS.

Acquisition, validation, calibration, and utilization of this simulator have been supported by the Freight Service Division of the Office of Research and Development, Federal Railroad Administration. The Passenger Systems and Facilities Division of that office has supported the modification, documentation, and maintenance. Modification and maintenance of the TPS has been the responsibility of M. Hazel of TSC, assisted by R. Larkin, C. Teague, and H. Landon of Kentron International Limited. The author is grateful to Dr. J. Hopkins of TSC for his valuabie counsel in organizing this report.

1.1 General Characteristics of a TPS............. 2
1.1.1 Input Requirements...................... 2
1.1.I.1 Route Data.................... 2
I.1.1.2 Train Data.................... 3
I.I.I. 3 Operating Scenario.......... 3
1.I.2 Basic Model (Algorithms).............. 4
1.1.2.1 Train Resistance............. 4
1.1.2.2 Tractive Effort.............. 5
1.1.2.3 Braking......................... 5
1.1.2.4 Acceleration.................. 6
1.1.3 Output....................................... 6
1.2 The USDOT/TSC TPS................................ 6
1.2.1 Special Features........................... 6
1.2.1.1 Route Data..................... 7
1.2.1.2 Train Data..................... 7
1.2.1.3 Mode1............................ 8
1.2.1.4 Output........................... 10
1.2.2 Limitations................................. 11
1.2.3 Future Modifications.................... 11

1:2.4 Interpretation of Results.............. 12
2 OPERATING CYCLE OF THE TPS PROGRAM.................. 13
3 MATHEMATICAL DESCRIPTION OF THE TPS.................. 16
3.1 Notation.. 16
3.2 Forces... 17
3.3 Tractive Effort..................................... 17
3.4 Train Resistance.. 18
3.4.1 Rolling and Friction Resistance...... 18
3.4.2 Aerodynamic Resistance (Wind)........ 19
3.4.3. Grade Resistance........................... 19
3.4.4 Curve Resistance............................ 20
3.4.5 Total Train Resistance.................. 20

TABLE OF CONTENTS (Cont.)

SectionPage3.5 Acceleration 21
3.5.1 Force Available. 21
3.5.2 Distance For Acceleration. 21
3.5.3 Time For Acceleration 22
3.6 Deceleration 22
3.7 Braking 23
3.7.1 Braking Force 23
3.7.2 Braking Distance 23
3.7.3 Braking Time 24
4 USING THE TPS PROGRAM 25
4.1 The Computer Environment 25
4.1.1 Temporary Files 25
4.1.2 Track Data Core Storage 25
4.1.3 CPU Time 26
4.2 Stored TPS Library Data Base 26
4.2.1 Stored Route Segments 26
4.2.2 Standard Through Routes 26
4.2.3 Standard Locomotives 26
4.2.4 Tractive Effort Data 27
4.3 Input Data File 27
4.4 Output Data 27
4.4.1 Printout File 27
4.4.2 Table File 28
4.4.3 Plot Data File 28
4.4.4 Run Summaries 28
4.4.5 Error Messages 28
4.4.6 Printing of Output 28
4.5 Running the TPS 29
4.6 The TPS User's Manua1 29
APPENDIX SAMPLE TPS OUTPUT A-1
INDEX I-1

TAB USDOTASC TRAIM PERFORHADCE SIEULATOR
IMTRODUCTION TO TRAI PERFOREAMCE SIAGIATIOH

1. I ATRODUCTION

A Train Performance simulator (TpS or Train performance Calcalator (TPC) is a conpiter program winich simalates the operation of a trais over a railyay ronte. it bas become a useful tool for many of the larger raisroads most of minch have developec sinmlatons to stit tineir own needs and computer spster capabinisies. The TpS in use at the Transportation Systers center (TSC) os the b. So Department of Transportation mas originally developed by a railroad
 the TSC DECsysitem-10 cGmputer and zas beem modified to empand its capabilities even further.

This introuctory section discmeses the general characteristics and features ard the basis for the mathematical model for amy frc and for the uSDOT/TSC TPS. Technical detail is kepe to a minimut in this section as well as in section 2 , 暔ich describes co operating cycie, or iterative process. The details of the matematical model are presented in section 3 for the nore techaical reader. Section 4 discusses the compher-related and user-related features and describes the warious ontput forms. Sapies of outpat are provided in the appendiz.

The purpose of a riain perforeance Simulator is to predict or replicate the vovement of a train alogg a given trach. The results of such a program are contained in tables or grapas that show the speed, time, distance, energy or fuel consumpion, and throtile posisions as the train moves along the route. Adaitional inforamion about the robte, suct as grades, curpes, mineposts, anc speed linits may also be showno A TPS mat be used to:

1. Determine the scheduled operating time for a train.
2. Deternine the motive power necessary to make a rum in a giver amount of time。
3. Determine the effect of ading for droppingl a locomotive unit to (ot from) the train.
4. Deternine the effect of ading (os aropping) tonage to for from the train.
5. Show the effect of a track relocation or reconstruction (uhich eliminates or reduces grades or curpest upon ike operating speeds, motive porer requirements anc energy consumpion.
6. Compare the operational problems presented by various
proposals for a new line.
7. Deternine the affect of eliminating or introducing a
speed restriction or station stop.
8. Determine tonnaqe ratings for a route based on a
train operating over the ruling qrade at a specified
minimun speed.
9. Compare runs over different routes.
10. compare results from the use of different train
resistance formulas fi. e.) vary the simulation
modell.
11. 1 General Characteristics of A TPS
12. 1.1 Input Requirements - In order to simulate the running of a train the TPS needs information about the route and about the train.
13. 14. 15. 1 Route Data - The TPS must have a description of the track over which to ran the train. A set of values describing the characteristics of a point on the track constitutes one record of track data. A group of records, usually beginning at one station and ending at another (not necessarily the next). constitutes a route seqment. The TPS will link toqether a number of such segments and run a train with or without stops from one end to the other.

The selection of points along the route to be coded is a matter of iudqment. The following guidelines are recommended:

1. A record is required where speed linits chanqe.
2. A record is required at every significant change in qradient.
3. If possible, a record should be coded for the beqinning and end of every curve; but where curves occur in frequent succession. it may be desirable to code only one record at the beqinning and end of several curves and enter an average value for the curvature.

4．A recora is regained for each significant station， janction ar inspection ston。

1．1．1．2 Train Data－Hitel the route has been described， information about the train is meeded in order to run it oyer the route．The lengit and rype of cars in the frain determine the aerodynamic forces acting on them．For example short loy flatcars and gondolas will offer mach lower aerodynamic resisiance than hi－cube bozcars and loaded TofC cars and the effects at higher speeds till be significant．The car weight and nubber of ayles determine the resistance from friction in the bearings and flazges and from rolling contact．The locomotive characterisctics reguirea are the data on tractive effort capabilities，anc the fuel or energy rates both iding （e．q．gallons per ainute）and ruming（e．g．gallons per horseponer－hourt．

1．1． 1.3 Operating Scenario－ghen a ronte and a train have been described，the mpS can rum a train over the route。 Howerer，a TPS usually car prowiae for additional variations from the normal operatirg conditions such as：

1．Starting time。
2．Alterations to the ronte（grades，curpes，etco）
3．Gore or feyer stops and different stop times．
4．Teaporary cianges ir speed limits from those specified in the tract daさa。

5．Changes in consist（iccomotives andor cars）at stops enroate．

6．Adhesion ratio variation for bad veatuer（vet rail）． or worst case．

7．Prevailing uinds，both velocity and direction．
8．Modification of resistance characteristics to account for unsual cars or lacomotives．

TRE USDOT/TSC TRAIN PER PORAANCE SIAULATOR INTRODUCTION TO TRAIN PERFORMANCE SIMOLATION
1.1.2 Basic Model (Algorithas) - The fundamental mathematical model for a train is based on simple Newtonian laws of motion. The forces involved are those due to train resistance. locomotive tractive effort, and braking.
1.1.2.1 Train Resistance - Train resistance is made up of a number of components:

1. Rollinq friction resistance is proportional to the weiqht and independent of velocity.
2. Bearing friction resistance is proportional to the number of arles but independent of weight and velocity.
3. Flanqe friction resistance is proporitional to weiqht and velocity.
4. Aerodynamic resistance is a function of size and shape and is proportional to the square of the velocity but independent of the veight.

The train resistance due to gradients and curvature can be added conveniently to the resistances listed above. Both are independent of velocity but proportional to weight and to the qradient or deqree of curvature. The basic equation used for train resistance was formulated in the $1920^{\prime \prime} \mathrm{s}$ by W. J. Davis*. Expressed in ponads of force, the resistance of a siaqle rail car is

where
b is the bearing friction coefficient
c is the curvature in deqrees
f is the flanqe friction coeffictent
F is the rolling friction coefficient
g is the gradient in percent
K is the air resistance coeffiaient
n is the number of axles
v is the velocity in miles per hour
W is the car weiglat in tons

* indicates nultiplication
** indicates exponentiation
* W. J. Davis. Jr. HTractive Resistance of Electric Locomotives and Cars", General Electric Review, October 1926.

It should be noted that the Dayis Equation as stated here determines the resistance force of a rail car. The poyer required to ofercome the force will be proportional to the product of that force and the velocity. Therefore, the locomotipe horsepater reguired to pall a given aerodynamic shape at appreaiable speed will be proportional to the cube of the velocity.

Davis determined values for the coefficients which were considered accurate for the rolling stcct of bis day. Hore recent tests have supported the use of alterative coefficients winich are oftem asea*.

1. 1.2 .2 Tractive Effort - Tractive efrort is the force phich a locomotive exerts at the driving meels to move itself and its trailing consist。 It is litiated by the parer arailable from the traction motors by the velocity, and by the adhesion characteristics of the weel-sail intersace. for a given loconotive horsepouer, a typical tractive effort curve is a hyperbola of the gereral fori

$$
T R=375 * E * H P / 7
$$

where

$$
\begin{aligned}
& E \text { is an efficiency factor } \\
& \text { HP is the loc parcipe horsepover } \\
& \text { - is the velocity in oines per hour } \\
& \text { TE is the tractive effort in pounds }
\end{aligned}
$$

 of a speed restriction or station stop, brakes are applied. This results in a retarding force at the wheal-rail inierface of all locomotives and cars in the erain lach is adhesion liqited out whict acts as an aditional resisting force. The force applied is a function of brake syster paraneters, time. velocity, and veight of ladiag.

[^0]THE USDOT／TSC TRAIN PER BORMANCE SIMDLATOR INTRODUCTION TO TRAIN PERFORNANCE SIMULATION

Abstract

1．1．2．4 Acceleration－If the forces due to train resistance， tractive effort，and braking are in balance，the train will remain at constant velocity．However，if they are different． there will be an acceleration（or deceleration）resulting from the familiar $F=\pi * a$ of N ewton．The acceleration will be equal to the alqebraic sum of the forces divided by the mass of the train．

1．1．3 Output－since a TPS may be used for different purposes．the output needs to be flexible．Some users may want only a timetable listing，others may want merely the total runnina time．other possibilities are instantaneous speed at every time or distapce interval，average speed for the whole run，drawbar pull，acceleration，throttle notch settinqs，and brake application or release．users interested in eneray consumption may want incremental energy used at every time or distance interval or just the total for the rung expressed as kilowatt－haurs or qallofs of fuel or even as eost in dollars．
obviously all these data cannot be displaped in a single format which will be convenient for everyone．Therefore a TPS should offer a variety of alternative outputs differing in deqrees of complexity and which can ber specified simply．

1．2 The USDOT／TSC TPS

A TPS can be designed with any degree of sophistication， depending upon the form and accuracy of the input data and the desired use and accuracy of results．The USDOT／TSC TPS is a relatively complex example．It incorporates all of the capabilities described above．In addition，a number of other features are included which add to its usefulness．

1．2．1 Special Features－The USDOT／TSC TPS is extremely flexible．ft has built－in fdefaulty values for almost every conceivable parameter，fincluding the conplete specification of a train．unless othedivise specified．a freight train pulled by three GP－35＇s and consisting of 40 loaded cars and 29 e⿴囗十介oties．all 50 feet long，with 3684 qross trailing tons，will be run．one compater run，called a＂job＂，can run up to 99 different trains over a route．vith changes enroute to the qrades．curves，stops，speed limits，and train consist．
 previously prepared data base or from tise input data. Stops. cuIpature gradients, and speed iinits can be changed during a train run and mill be restored autonaticaliy for the nert train The train can be mede to start and end its run Virtually anpobere along the tracho
1.2.1.2 Train Data - conventionai freigit or passenger trains may have up to nime locomotives and any nuber of cars. Multiple-unit pessenger trains an have up to 18 carsp any number of which may be unporered. Energy sources may be fuel fiesel-electric anesel-hydraulic. or turbine) or ali-electric. Data is qaintained in a TpS iinrary data base for virtually all compon locomotipes including complete specification of the tracive effori curbes mon-standard locomotives mav be specified easily. The data required are:
i. 需eight in tons,
2. Leqgth in feetg
3. Rated bossepover,
4. Nubber of asless
5. Runing energy rate in gallons per horsepoter-hour for kilovatts pex horseposert.
6. Iding emergy nate in gelioms per minute (or kilouattsh, and
7. Transmission eficiency.

The standera tractive effort curpe will be conputed by the \quad mS umiess an indicator is included vith the locomotive data, wich allosis for nom-standard tractife effort data to be specified simply as a table of tracive effort walues at increments of one mile per houro

The car lenoth will be 50 feet and each will have four arles unless otherpise specisied Fieicha car consists can be specified in eight differemt ways:

1. Specify nothing, yiekaing the dexamit consist: 40 loads, 29 eqpates, $36 s^{4}$ gross training cons.
2. Specify the total maber Of carso The TPS vill assign 58\% of then as loads and 42% of them as empties with arerage weight of 53. 4 toms.
3. Specify the number of loads and empties. The TPS will assiqn weights of 72.5 and 27 tons, respectively.
4. Specify number of laads and empties and gross trailing tons.
5. Specify number of loads and empties and total neight of lading. The TPS will assign a liqht veight of 27 tons to each car.
6. Specify total number of cars and gross trailing tons. The TPS will assign 58% as loads and 42% as enpties.
7. Specify the number of loads and empties and the weiqhts of each.
8. Specify all parameters individually for every car in the train by supplyinq them directly.
passenqer train consists can be specified simply. A simple code indicates uhether conventional or multiple-unit. If conventional, the loconotives are specirfied as for a freight train and the number of cars and their weight, length, and number of axles are given. Any default resistance coefficients may be overridden. A multiple-unit train is specified as if it vere all locomotives. The TpS gives ther the proper tractive effort characteristics while treating them in all other respects as cars.
1.2.1.3 Model-Five train resistance equations are built into the TPS. The default equation will be Davis modified by Tuthill*, but any of the others may be specified easily. The qradient and curvature terms are identical and are onitted here. In the equations below:

L is the car length in feet
n is the number of axles
R is resistance of a sinqle car in pqunds
∇ is the velocity in miles per hour
w is the car veight in tons

* indicates nultiplication
** indicates exponentiation
* J. K. Tuthill, ningh Speed Freight Train Resistance",
University of Ilinois Engineering Bulletin 376,1948 .

1．Davis．optionamy modtfied by Tathill above 40 who

Hote：In the Futhili modistration the equation is replaced by a natrix of coefficients then the velocit等 exceac 40 毒多。

2．MCanadian 习ational＊。

3．Canadian fational－Esie Lactawanna for TorC／COFC．

4．Totとent streambinea passenger。

5．Totten mon－streamined passemger．

In adaition the user mat spectiv individual coefficients for the locomotive consist or the tiain consist or for each unit in each consist fi．e．nate ng custom resistance eguationsi．

For accuract on grades the train is mblochear．The training consist is divided into no to 25 bacts of cars．Each block is considered as an indapenamt mass upon thich the train forces act．This is paricuzarly significant in long tinins where part of the train is gojng ephin winle amother part is qoing downill mhe entime lemgth of the vrain is considered so that no acceleration is pezaitted unil the caboose has left a speser－restricted zone．

A simplified explamation of the basic iterative procedure is as follows．The TPS comparenthe presert frain spead to the speed limit．In traceuqe eftota is apailable in excess of the train resistance，it wili be applied subject to the admesion
 distance to achieve the velocity cinatge mill be calculatea and incremented．ghe uses has che ability to orerride the defanit Velocity increvent os loo mile per hour fi the train is

[^1]already at speed limit, then the distance is increased by 528
feet and the ney time is calculated.
The TPS looks ahead 30 track records for speed limit reductions and calculates the distance required for braking in advance. When that point is reached, the brakes are applied. A brake pipe propagation tiae of one tenth second per car and the variation of brake shoe friction coefficient with speed are both taken into consideration. once deceleration is called for, the velocity uill be decremented and the time and distance to achieve the change will be calculated and incremented.

The model requires the train to attempt to accelerate to and ran at the speed lixit whenever possible. This could be a serious constraint were it not for the fact that the user can modify the speed limits at vill anywhere along the track where there is a data record. The TPS can sirulate speeds up to 200 mph. Cantion is advised, hovever, in interpretiag results of runs at over 80 mph , due to uncertainties in train resistance at the higher speeds.
1.2.1.4 output - The user has a choice of Summary or Detail printout. The sumary printout contains a line only at stations alonq the route and includes only location. time. speed, and enerqy information. The Detail printout contains a line every time the speed changes by one mile per houn or the distance is incremented by one mile. In addition to all the information from the Sumary Printout, a Detail Printaut gives tractive effort, drawbar pull. throttile notch, and acceleration.

Both printouts qive a complete description of the train (lenqth, veiqht, horsepquer, resistance coefficients, etc.) at the beqinning and both give a sun sumary (total time and enerqy and averaqe speed) and a tinetable at the end. A Throttle Position Sumary and a Velocity Range Sumary are available as options to both printouts. Another output option is a file of values at each iterative step which can be used later by another progiram to plot graphicaliy speed, speed limit, enerqy, elevations, grades, on curvature against time or distance.

TEE USDOT／TSC TEAIN PERFOERANCE SI四UEATOR

 INTRODUCTION TO TRAIN PERFOBMAZCE SIMEXATION1．2．2 Limitations－The nature of the model creates some limitations．

1．Velocity initialisation is bot perwitted．The train Wust depart the originating seation at zero speed and arrige at the eestination station at zero speed．

2．If wind effects are desired．the uind velocity and relative direction onst ba constant for the entire run．

3．The train may not be handed ezactiy as a real engineer gight do it．For instance，in some situations a real engineer might apply brakes lightly zhile applying poter fust to keep his train ＂stretchedn．This woald be difficult to model．

4．Tae TPS is ultimately limited by the accuracy of the train resistance model．Most woiels were depeloped many years ago，and are generally considered to be valid only below about 80 mph．only recently has there been a remened interest in developing accurate resistance woalels primarily for use in simulations of high－speed passenger trains。

5．Tractive effort is applied in a contingous curfea not guantized by notch setting．

1．2．3 Future Modifications－The features and limitations described above apply to the TPS currently in use at TSC． possible moaifications incluce：

1．Discrete tractive effort values determined by throtile notch setting．

2．Goility to ovesride the default parameters in the braking algoritam。

3．Optional additior of dymamic brasing．
4．Built－in car library data bese，callable by code nubers．

THE USDOT/TSC TRAIN RERBORMANCE SIMULATOR
INTRODUCTION TO TRAIN PERFORAANCE SIMULATION
1.2.4 Interpretation of Results - Comparisons of simulation results with actual performance mave shown that the simulator reproduces the movement of the train with reasonable accuracy. Results should be thonght of as an estimate of the minimum running time over the selected section of track for a train with the specified motive pover and consist characteristics and considering the speed restrictions and stops imposed. Normal stoppinq times for inspections and crev changes are not usually included in the prepared track data and the TPS does not antonatically include the randon delays such as meets and mechanical failures incurced by freight trains. When applying the simulator to scheduling applications, additional time should be allowed for these delays, by either adding them to the TPS results or by specifying them in the input data.

TAE USDOT/TSC TRAIN PIFRGREMCE SIAUIATOR

2. OPERATING CYCI OF THE TPS PROGEAM

The \quad run cyclem of the TPS progran actmally corputes the novement of a crain. Before tais cycle may be begum. information (smppied by the tser) rest be read specifying:

1. The routeg thich tells the program thich track records, if any, are to be remoped from the dist and stored during the course of a job, and the order in which the recoras must be remogea;
2. The locomotives, wich telas the program hot to compute the tractive effort and locomotive resistance at each speed: and
3. The train consist, when tells the progran the weight and length of the traing wich is necessary to conpate the train resistiance.

After the recessary information has been read, the TpS examines the train and divides it into blocks of cars to more accurately determine the forces involved. particularly important in long trainso The mazinem naller of blacks is 25. If the train is longer than 25 cars, mo block can have less than two cars. all blocts tave tie same mumber of cars except the last bloct, thict mag have a dififerent number if required to acconnt for all of timm. Trains tith 25 or fewer cars will be blocirea one car par hloci. Hultipie-unit trains are almays blocked one unit per block. The cycle proceeds in the following mannen:
4. Calculates tractive effort of power consist at present speat fo mph at start):
5. Calculates train resistance based on train beight and flamge and air resistance coasficients (imputy and present grade and curve erach characteristics;
6. Calculates force available fractive effort minus resistancel. and
A. If force available is posidive and:

1. Speed limit is bigher than present train spead: calculates distance and time reguired to ascelerate to a net speed bigher than the present speed by the amount of the incremsttal velocity:
2. Speed linit is at present train speed: calculates time required to move 0.1 mile distance at present speed:
3. Speed limit is lower than present train speed: calculates distance and tine required to brake to a new speed lower than the present speed by the amount of the incremental velocity:
B. If force available is zero and:
4. Speed liwit ishigher than or equal to the present train speed: calculates time required to move 0.1 mile distance at present speed:
5. Speed limit is lower than present train speed: calculates distance and time required to brake to a new speed lover than the present speed by the amount of the incremental velocity;
C. If force available is negative and:
6. Speed limit is higher than or at present train speed: calculates distance apd time required to decelerate to a new speed lover than the present speed by the amount of the incremental velocity:
7. Speed limit is lover than present train speed: calculates distance and time required to brake to a nev speed lower than the present speed by the amount of the incremental velocity:
8. Adds the distance and time determined in 6. to the totals already established (which the train has moved previously) and raises or lowers the speed by an amount equal to the iterative velocity increment unless the train has maintained a constant speed;
9. If the traing in moving the distance, has encountered a track record, mich usmally incicates a change in grade, curvatare, or speed limit. the morement is abbreviated so that it aces not miss ang suden cinames reficmen in the nes record. The time reguired is reduced proportionately to the bistance,
 has actually accelerated or decelenated by an amont equal to the iterative velocity increment in a fraction of the distance and time fhich normally would be reguited. using tire program defanit value of 1.0 aph for twe relocith iocrement can result in significant raming time vasiations on rans with only slightiy different consist characteristics when the trach being simuated has mang grades and curves (causing tracz data recoras to be closely spaced) and when the train is accelerating or decelerating frequerty. critis progran characteristic has no effect on accuract shen the tsain is moving at a comstant speed.)
10. If the rear of the train has passed the rear-most trac言 recora still stored in the computer it is remoged from nemory and a nex track record is read in ahead of the traing
11. If the net track recona inainates a reduction in the speed ligit or a stop at a location of the track record, the pregram deternines the aistance reguired to brake the train from its pregious speed to the desired speed and stores this information as an Martificial spoad lingitm at the point where the train should begin brazing, so that the train gill begin brating in advance of the stop ar nety speed limit.
12. Eevurns to 4o to begin the cicle again at the gev location

Finally the general pregram stores certain information at selectea logations for use in printing sumaries ame a timetable at the end of the ram, as vell as the accurulated energy consmption information.

THE USDOT/SSC TRAIN PERFORMANCE SIMULATOR MATHEMATICAL DESCRTPFIOR OF THE TBS

3. GATHEHATICAL DESCRIPTION OF THE TPS

This section describes in mathematical terms the basis for the calculations made by the TPS in simulating the running of a train. The train is expected to follow Newtonian laws of motion.

3. 1 Notation

Following is a list of all the variables used in this section. As a general rule adjacent letters in equations are part of the name of a single variable. Variable names are always
 H/H, "*W, or $H * * H$) on a space. Parentheses and square brackets act as separators also.

V	velocity, ft/sec
V	velocity \#ph
Vair	effective air velocity,
VE	high-speed break, mph
VI	10x-speed breaty mpla
\%	sind velocity mph
嫊	weight of a cary tons
We	weight on drivers, tons
We	eppty cas peight tons
*	means mutzolication
\#	means exponem intion

3. 2 Forces

The force available to accelerate a body is the difference between the propelling force and the farce which is resisting movement. For a train the propeliing force is the tractive effort provided by the locomotive The resisting fonce is the train Iesistance incinding gradeg curvature and wind resistance. Braking force bili be discussed in section 3.7.

3.3 Tractive Effort

Horsepower (or power) is the rate of doing vork wark is
 Horsepower is defined as

$$
\begin{equation*}
\mathrm{HP}=(T \neq \mathrm{a} / t) / 550 \tag{1}
\end{equation*}
$$

When T is in pounds, d is in feet, and is in secondso The term d/t is the velocity, wo infeet per second.

$$
\begin{equation*}
\mathrm{HP}=\mathrm{T} \% / 550 \tag{2}
\end{equation*}
$$

The TPS uses the customary units for velocity Fo in miaes per

$$
\begin{equation*}
\mathrm{HP}=\mathrm{TE} * \nabla / 375 \tag{3}
\end{equation*}
$$

Equation 3 assumes a transmission efficiency of 100\% Diesel-electric hocomotives typically have a transmission efficiency of 80 to 85 percent。 Incluaing the efficiency factor. E. in Fguation 3 gives

$$
\begin{equation*}
H P=T E * V /(375 * E) \tag{4}
\end{equation*}
$$

OI

THE USDOT/TSC TRAIA PEREORMANCE SIMOLATOR

 MATHEMATICAL DESCRIPTION OF THE TPS$$
\begin{equation*}
T E=375 * E * H P / V \tag{5}
\end{equation*}
$$

3.4 Train Resistance

Train resistance is made up of a numer of companents:

1. Rolling friction resistance is proportional to the weight andindependent of velocity.
2. Bearing friction resistance is proportional to the nuaber of axles but independent of weight and velocity.
3. Flange friction resistance is proportional to weiqht and velocity.
4. Aerodynamic resistance is a fanction of size and shape and is proportional to the square of the air velocity but independent of the Yeight.

The train resistance due to gradients and curvature can be added convenientiy to the resistances listed above. Both are independent of velocity but proportional to veight and to the qradient or degree of curvature.
3.4.1 Rolling And Friction Resistance - The rolling friction resistance is proportional to the veight and independent of velocity. The proportionality coefficient is F.

$$
\begin{equation*}
R(\operatorname{collinq})=P * q \tag{6}
\end{equation*}
$$

The bearing friction resistance is proportional to the number of axles but indepeadent of veight and velocity. The proportionality coefficilent is b.

$$
\begin{equation*}
R(\text { bearing })=b * n \tag{7}
\end{equation*}
$$

The flange friction resistance is proportional to seight and velocity. The proportionality coefficient is f.

$$
\begin{equation*}
R(f l a n q e)=f * ⿴ * V \tag{8}
\end{equation*}
$$

3.402 Aexodpmanic Eesistance（Tind）－The TPS uses a simplified zethod for modeliag the mind resistance of a moving traing picture a train moving from vest to east at a velocity V and a steady mind biowing gemeraliy east to mest at felosity
 lateral components of the wind are

Although the lateral Eorce aces along the sides of the cars of the train in a airection perpendicular to the direction of travel，it fill be atied to the longitudinal force for purpose of analpsis and bili be assioed to act upgn the cross－sectionel area of the train flac effecti耳e vind yelocity then becomes

Note that，for all posithye angles less han 180 degreesy he lateral component is alyay positine ane therefore increases train resistance but winen the mind amgle is greater flan 90 degrees（a fain mind the lobsitudinal component is negatives reducing train resistance。

The wind resistance is incladed in the train resistance equation b using am efinechite air pelocity instead of the train velocity．

$$
\begin{align*}
& \text { Vair }=\mathrm{F}+\mathrm{Va}_{\text {(exf }} \text { (ex } \tag{12}\\
& E(a i r)=R *(7 a i r * * 2) \tag{113}
\end{align*}
$$

where

$$
\begin{equation*}
K=k+C * 2 *[(1 / 100) \neq 2] \tag{14}
\end{equation*}
$$

which reduces to $R=C \neq A$ when both and eare zero．

3．4．3 Grade Resistance－Gredient is castodarily aeasured in percent。 For every 100 feet of horimontal distance，the vertical charge is q feet．visere g is the gradient．A stationary rail car hela in equilitorinton a gradient will hate three forces actimg upon ito neglecting the Eriction teras tutich aze already acoonted for．The rail spporting force acts uparard and norat to the reils．The drawbr force， R（qFade）holding the car frem romityg donnhilif is parallel to the Iails．The grapity force acts verticalip downord and is egual to the car weight or 2000\％poumds．The gravity

THE USDOT/TSC TRAIN PERFORMANCE SIMULATOR MATHEMATICAL DESCRIPTIOA OE THE TPS
force can be broken into two orthogonal companents, uhich are equal and opposite to the other two forces for equilibrium to be maintained. The ratio of paramel force to normal force will be exactly equal to g/100, by sinilar triangles. Since qradient is always small, in a trigonosetric sense, an approximation can be made which states that the normal component is very nearly equal to tre gravity force (i. e. the rail lenath is very nearly 100 feet for every 100 feet of horizontal distance). Wherefore, equating the sines of the smallest angles in similac triangles

$$
\text { R(qrade } /(2000 * \pi)=(\mathrm{g} / 100)
$$

or

$$
R(\text { qrade })=20 * q *!
$$

3.4.4 Curve Resistance - Curvature, c, \quad is customarily measured in degrees of arc per 100 feet of chord. By this measuring scheme tangent track has a curvature of zero and increasing curvature means decreasing curve radius, or sharper curve. The resistance due to curvature has been found enpirically* to be

$$
\begin{equation*}
R(\text { curve })=.8 * c * 甘 \tag{16}
\end{equation*}
$$

3.4.5 Total Train Resistance - The total resistance of a rail car is the sum of the resistances due to rolling, bearing, and flanqe friction and aire gradient, and curvature.

[^2]
THE GSDOT/TSC TRAIE PERTORMACE SIMULATOR

 MATAEABTCAE DESCRIPTIOA OF THE TPS
3.5 Acceleration

In order to accelerate the traing the mazimum usable tractive effort is applied. If that is greater than the train resistance, the train vill accelerate.
3.5.1 Force avilable - The force available for acceleration is the difference betuen the tractive effort applied and the train resistance. The manmom tractive effort applied is limited to the tractive effort available from the locomotive and by the admesion of the locomorive。 The tractive effort available is stated by Eguation 5 when f , is the manimum horsepower available. The admesiom force limit, AI, in pounds, is a fanction of the lecomotive geight on dripers, ma, and the adnesion ratio for coefficient of adaesiony, $A R$.

$$
\begin{equation*}
E L=2000 * A R * E D \tag{18}
\end{equation*}
$$

The tractive effort appied vill be the lesser of Equations 5 and 18 yhen acceleration is celled foz.

$$
\begin{equation*}
\text { TE(appl) }=\text { Smaller of me(max) and Ad } \tag{19}
\end{equation*}
$$

The force available for accleration is, then

$$
\begin{equation*}
F a=T E(a p p l)-R \tag{20}
\end{equation*}
$$

3.5.2 Distance For Accelerafion - The acceleration is assumed constant when iteratirg from one velocity to the mert. The acceleration can be determined from the fanilier $F=$ man of Newton. Since acceleratien is in mphysec, is in tons and G is in ft/sec**2. sons conversion factors rast be introduced.

$$
\begin{equation*}
\mathrm{Fa}=(2000 * 5280 / 3600) * 5+6 / 6 \tag{21}
\end{equation*}
$$

The imeremental velocity yhan accelemating finom velocity V1 to 72 is simply the product of acceleration and time.

$$
\begin{equation*}
\nabla 2-\nabla 1=a \text { 弤 } \tag{22}
\end{equation*}
$$

The distance travellea in that tive is

$$
\mathrm{a}=(5280 / 3600\} 7\left[\begin{array}{l}
\text { (1) } \tag{23}
\end{array}\right.
$$

Equations 22 and 23 eap be solyed for acceleration independent of time.

THE USDOT/TSC TRAIN PER FORMACE SIMOLATOR MATHEASTICAL DESCRIPTIOMOF TAE TPS

$$
\begin{equation*}
a=(5280 / 3600) *(\nabla 2 * * 2-\nabla 1 * * 2) /(2 * d) \tag{24}
\end{equation*}
$$

Equation 24 may be substituted into Equation 21 to get the force in terms of distance.

$$
\begin{equation*}
F a=66.8 * W *(V 2 * * 2-V 1 * * 2) / d \tag{25}
\end{equation*}
$$

Equation 25 considers velocity of translation only. The rotational acceleration of the wheels is taken into acount by a five percent increase.

$$
\begin{equation*}
\mathrm{Fa}=70.14 * \mathrm{v} *(\mathrm{v} 2 * * 2-\mathrm{V} 1 * * 2) / \mathrm{d} \tag{26}
\end{equation*}
$$

The distance for acceleration is determined by rearranging Equation 26.

$$
\begin{equation*}
\mathrm{a}(\mathrm{acce} 1)=70.14 * *(\nabla 2 * * 2-\nabla 1 * * 2) / \mathrm{Fa} \tag{27}
\end{equation*}
$$

3.5.3 Time For Acceleration - Equation 22 may be solved for acceleration and substituted into Equation 21.

$$
\begin{equation*}
F a=91 \cdot 10 * W *(\nabla 2-\nabla 1) / t \tag{28}
\end{equation*}
$$

This is also increased hy five percent to allow for rotational acceleration of the wheels.

$$
\begin{equation*}
\mathrm{Fa}=95.65 * \nabla *(\nabla 2-\nabla 1) / t \tag{29}
\end{equation*}
$$

The tine for acceleration is deternined by rearranging Equation 29.

$$
\begin{equation*}
t(\text { acce } 1)=95.65 * ⿴ *(V 2-\mathrm{V} 1) / \mathrm{Fa} \tag{30}
\end{equation*}
$$

3. 6 Deceleration

Deceleration will ccur azturaily when the resistance of the train exceeds the applied tractive effort. Deceleration also occurs when the brakes are applied. cansing an additional resisting force, the characteristics of yhich are discussed in the next section. The eguations used to determine the distance and time for matural deceleration are the same as those used for acceleratrion, i. e. Equation 27 and Equation 30. In these equations $V 2$ is the new velocity, V1 is the present velocity, and Fa is the net force. Since the train is decelerating. V2-V1 is pegative, but for deceleration Fa is also negative, resulting in positive distance and tine. The

THE USDOTASC TAATN EEMFOR無ACE SIMOEATOR MATHEMATICAL DESCBEPTION OF
deceleration is assumed constant during each iteration from vi to 72.

3．7 Braking

When the train neads to decelerate because of a speed restriction or stop the bràes are applied at a location previouslr calcriated by the TpS．That location is determined before the train reaches it by apploing the equations below and iterating bachuaras froz the speed restriction or stop （see also step 10 of seztion 2）．For deceleration after that location iteration proceets formard as for natural deceleration except thet reme brating force is appliea raile the tractive efsort is sett to zero．A full service application is simblated tith appropniate propagation delays．

3．7．1 Eraking Force－The force．Fbo developed by the braking sqster to stop the train is a fanctiog of a nuber of braking system paraneters．
日hich is dependent upan the velocity．The TpS ases the following simplified relationstipo

$$
\begin{array}{ll}
(E b \neq f s)=0.12 & \text { for } \nabla>40 \text { mpt } \\
\left(E b \neq \frac{1}{s}\right)=0.25-\nabla / 300 & \text { for } \nabla<40 \text { mph } \tag{33}
\end{array}
$$

The application ratio，p_{0} is the ratio of actual brake cylinder air pressure to brate cifinder pressure for fuil sertice application and is fixed by the TPS at a vaiue of 0．75．The braking ratic， B_{θ} is calcugated according to an alqorith but generally fails in the range of 0.20 to 0.60 for freight cars． 0.65 fas 1 ocomotives，and 1.50 for passenger cars．

3．7．2 Brating Distance－Them brating，the tractive effort being appied is zero and the only forces actipg on the train are the braking forea，Fb，and the train resistance， E_{n} both
 substituted for Fa in Egaztion 27 to get the brating distance。

```
THE USDON/TSC TRAIN PER RORMANCE SIMOLATOR
```

MATHEUATICAL DESCRIPTIOR OP THE TPS

Where Fb is deternined by Equation 31 and R is determined by Equation 17. When braking is applied, the output indicates that the throttle is in notch 0 and the tractive effort column contains the braking force $F b$, which is a negative value, instead.

The distance the train mould travel, assuminq no deceleration, before the last car senses a brake application is

$$
\begin{equation*}
\mathrm{a}=(5280 / 3600) * \mathrm{tp} * \mathbb{N} * \nabla \tag{35}
\end{equation*}
$$

where tp is the brake pipe propaqation rate in seconds per car. The TPS uses a prapaqation rate of 0.10 seconds per car. For a current velocity of $\nabla 1$. Equation 35 reduces to

$$
\begin{equation*}
d(\text { prop })=1.467 * t p * N * V 1 \tag{36}
\end{equation*}
$$

The TPS uses the follouing approximation for braking distance, which is intended to allow far brake pipe propaqation time and brake application rate.

$$
\begin{equation*}
\mathrm{d}(\mathrm{brk})=1.3 *[70.14 * 甘 *(V 1 * * 2-V 2 * * 2) /(\mathrm{Fb}+\mathrm{B})+\mathrm{d}(\text { prop })] \tag{37}
\end{equation*}
$$

The distance d (prop) is evaluated by Equation 36 only for the first iteration iamediately after the brakes are applied. After the first iteration and for all subsequent iterations until the brakes are released d (prop) $=0$.
3.7.3 Braking Tine - The quantity - (Fb+R) can be substituted for Fa in Equation 30 to get the braking time.

$$
\begin{equation*}
t=95.65 * V(V 1-\nabla 2) /(F b+R) \tag{38}
\end{equation*}
$$

The time, assuminq no deceleration, before the last car senses a brake application is

$$
\begin{equation*}
t(\text { prop })=t p * \mathbb{V} \tag{39}
\end{equation*}
$$

The TPS uses the following approximation for braking time, which is intended to allow for brake pipe propagation time and brake application rate.

$$
\begin{equation*}
t(b r k)=1.3 *[86.00 * R *(V 1-V 2) /(F b+R)+t(p r o p)] \tag{40}
\end{equation*}
$$

The time t (prop) is evaluated by Equation 39 only for the first iteration immediately after the brakes are applied. After the first iteration and for all subsequent iterations until the brakes are released t (prop) $=0$.
 USTMG TEE TES PROGRAK

This section descrifes briesiy how the TPS is rum on the TSC DECs\#stem-10. It is assmed that the user is familiar gith the conmon Dicsystem-10 道ontor comands, and procedures for logqing in and out of the systed Sone kamledge of Fartran format specifications will e ielpfal but is not necessary.
4. 1 The Computer Environment

The TPS progran is mintten in FoRTRAN and is conpiled under
 in the TPS Administratoss disk areao The ezecutable core inage file ocapies 130 dist blocks and when copied into core reguires 35 mords of storage.
4.1.1 Temporary Files - Certain procassed data required by the $T P S$ is stored in temporam files in the user s disls area (DSK: while the figs is runingo Because these temporary files have fired papes, the TPS should not be run br wore than one user loggea in under the same project-programer numer. These files are deleted automatically by the TPS when they are no longer needed and are therefore normelly invisible to the user.
4. 1.2 Tract Data core storage- Modified versions of the TPS exist utich do not store track data on the user"s dist but instead store it in care ginis cecreases ezecation time siqnificantir in ezchange Eor a larger use of core. These versions are linited in the naber of track data records they can store and use additional core as follows:

Progran		AbDITIO
병연롤	EECORDS	CORE US
TPSA	200	58
TPSB	1000	248
TPSC	2000	488
TPSD	unitimited	nore

THE USDOT/TSC TRAIN PEEFORMANCE SIMULATOR
USING THE TPS PROGRAM
4.1.3 CPU Time - CPU time for running a TPS job can vary from a few seconds for a simple job with just one train run over a very short route with no changes enroute to one minute or more for more complicated jobs with a dozen runs and a few changes enroute. It is sometimes advisable, therefore, to run the TPS under Batch Control for the more involved cases. CPU costs for a TPS job typically ranqe betreen $\$ 1.00$ and $\$ 70.00$ depending upon the number of trains and the number of records of track data encountered.

4. 2 Stored TPS Library Data Base

The TPS from time to time makes use of data stored in disk files maintained by the TPS Administrator. These files constitute a TPS Library data base and are updated as new data become available. All are uritten in ASCII so their contents may be examined on line printer.
4.2.1 Stored Route Seqments - The TPS Library data base includes a set of random access disk files of stored track data which currently contains data for a number of U. S. railraad main lines and branch lines. Other routes are being added as they become both available and useful to the TSC comunity. Many track data files may be maintained for special purposes by either a TPS user or by the TPS Administrator.
4.2.2 Standard Throuqh Routes - Train routes are usually wade up from a number of route segments. To make the coding easier for some commonip used routes. a random access disk file contains pointers to the proper seqments in the track data files. Standard Throuqh Routes are specified simply by a sinqle numeric code.
4.2.3 Standard Locomotives - Data for a number of common locomotives are maintained by the TPS administrator in a random access disk file. This file contains all the data needed by the TPS to chacacterize completely each locomotive including pointers to the tractive effort data. Standard locomatives are specified simply by single numeric cades.
 USENG THE TPS PROGRA音

4．2．4 Tractive Efiart lata－Tractive effort data for
 are calculated by the sps using an apzropriate algorithe Some locomotives homenerg co mot have mitpicalo tractipe effort curpes．In this case pointess direct the rps to read tractive effort palues in thrsements of one mile per hour from another random access ajs咅 file in the zos adininistratoris dish area，Custom mecaotiones men also use data from this inie or the complete set of tractive effort values map be included in the TPS input date。

4．3 Inpat Data File

Before the TPS can ran any traims am Inpat Pata File mast be created in the user s dist area wich specifies the hind of output desired，the route to be travelled，tae namber of runs to be made over the ronte the train consist for each rumg and yarious other parameters of the job phe name of the Input Data File is selected by the user，and becopes the name of the TPS job anc is identinied on all printonts．

4．4 Output Daとa

The TPS output is witten onto three files on the user＇s aisk （DSK：）The file name of all ontput filles is the same as the mame of the Input Data bile（aiso the TPS job zamelo File mame extensions fill differ depewing upgh fine type of output file fhe output files are described in the nezt three sections．Sanples of ontaratare shove in opendiy A ．

4．4．1 Printont File－Is alvays mitten even though it may be null．It is the principal output file and contains：

1．Track data listing（if erabled：
 disabled：

3．Tonnage Rating Report（if emajeale：
4．Run Summaries fanless printout is aisabled）：
5．Thiottle position Sumaries fix enableds：
6. Velocity Range Sumaries (if enabled); and
7. TPS error messages, if any.
4.4.2 Table File - Is always written. It contains:

1. Copy of Input Data File with colum headings:
2. Run Summaries:
3. CPU time and cast reparts: and
4. Acceleration tables (if plot Data is enabled).
4.4.3 plot Data File - Is written only if enabled. This file is designed to be used as input to a separate plotting program to provide graphical TPS output.
4.4.4 Run Sumaries - Run Summaries fotal time and distance, average speed, and total energy used) are always uritten in both the Table file and at the controlling terminal. They will also be written in the Printout file if either a Sumary or Detail printout is specified.
4.4.5 Error Messages - Error messages generated by the TPS during erecution are sent to both the printout file and to the controlling terminal or Batch control loq file.
4.4.6 printing of ontput - all output contains upper/loner case text. Two general kinds of printout are available. A Detail printout requires the full 132 colunn capability of the line printers but a Sumary printoat yill fit on paper 8.5 inches wide. The Table file requires wide paper (the default).

THE USDOT/TSC TBATH PER FORHA YCE STMULATOR USIWG THE TES PROGRAR

4. 5 Running The TPS

Once an Input Data File has been estabishedg the TPS can be In using a simple monitor comand whick filil copy the TPS into the user's core area and tegin erecntion. The TPS mill respond with an introduction possibly followed by an update notice and then it will request the user to enter the full name (inclucing extensiont of the Impat Data File, terninatei by a carriage returg. No other rps input is reguirea. The TPS competes the fob and exits to the fonitor.
once at monitor level, the vser can issue commands to print the output data or log out of the system.
4.6 The TPS GSerys Man ual

A comprehensipe user s menuel for the uSDOTASSC TPS is maintainea by the TPS Ad anjserator and is revised from time to time as the need arises. It is available to anyone mo has a serious interest in using the TPS. It contains the detailed step-by-step procedure for creating an Input Data File and explains how to soecify all esthe varions opfignal featares.
A PRENDIE
SAMPLE TPS OUTPDT
PAGE
Buf Sumany a-2
Timetable A-3
Throttle Sumary A-4
Velocity Summary A-5
Summary Printout a -6
Detail printout a-7
Tonnage Rating Report A-8

```
TPSD 4G(160) 19-May-78 Job EBTR Train 3EBC Run 1 Page 5
                    RUN SUMMARY
```



```
    Fuel: qallons consumed running: 1203.41
        Gallons consumed idling: 0.40
        Total qallons consumed: 1203.81
        Cost at 39.00 cents per qallon: $ 469.49
```

```
Job: PSSANY Trein POO1 27-Jul-76 Run 1 Page 4
Simulated run: mociern passencer train pooi
Erom Buffalo to New York: via Penn Central
Using rotten equetion for streamlined cars
```

TIMETABLE

		CLOCK	TIME		ELAPS		TIME	FASSING	MINUTES
station		HRS:MIN	HRS:MIN		HRS:MIN		HRS:MIN	SPEED	STOPPED
Buffalo			LV 10: 0			LV	0: 0	0	
Lancaster			LV 10:16			LV	0:16	50	
Corid			LV 10:32			LV	0:32	50	
Batavia			LV 10:47			LV	0:47	50	
Chuschville			LV 11: 4			LV	1: 4	50	
crili Jet.		-	LV 11:11			LV	1:11	50	
Rochester	AR	11:26	LV 11:29	$A R$	1:26	LV	1:29		3
E. Fochester			LV 11:40			LV	1:40	50	
Fairport			LV 11:44			LV	1:44	50	
macerion			LV 11:55			LV	1:55	50	
Newark			LV 12: 6			LV	2: 6	50	
Lyons			LV 12:12			LV	2:12	50	
N. weedsport			LV 12:28			LV	2:28	50	
warners			LV 12:56			LV	2:56	50	
syracuse		13:14	LV 13:17	AR	3:14	LV	3:17		3
canastota			LV 13:54			LV	3:54	50	
Rome			LV 13:60			LV	3:60	50	
Ut!ca	AR	14:17	LV 14:20	AR	4:17	LV	4:20		3
Herkfiner			LV 14:44			LV	4:44	50	
Littie Falls			LV 14:47			LV	- $4: 47$	50	
Fonde			LV 15:11			LV	5:11	50	
Amsterdam	AR	15:25	LV 15:27	AR	5:25	LV	5:27		2
Hoffmans			LV 15:44			LV	5:44	30	
Rotterdam Jc			LV 15:50			LV	5:50	30	
S, Senery.			LV 16: 0			LV	6: 0	45	
Carman			LV 16: 9			LV	6: 9	30	
Karner			LV 16:14			LV	6:14	60	
w. Albany			LV 16:19			LV	6:19	50	
Albany	AR	16:21	LV 16:41	AR	6:21	LV	6:41		20
Rensselaer			LV 16:47			LV	6:47	25	
Schoiack Ldg			LV 17: 1			LV	7: 1	60	
Stuyvesant		-	LV 17: 6			LV	7: 6	50	
Newton Hook			LV 17:10			LV	7:10	50	
Hudson			LV 17:19			LV	7:19	43	
Rhinecliff			LV 17:57			LV	7:57	50	
poughkeepsie	AR	18:14	LV 18:19	A	8:14	LV	8:19		5
CrotonHarmon MO			$\begin{array}{ll}\text { LV } & 19: 13 \\ \text { LV } & 19: 47\end{array}$			LV	9:13	35 35	
New York		19:53		AR	9:53				
		CLOCK	TIME		ELAPS		TIME	PASSING	MINUTES
Station		HRS:MIN	HRS:MIN		HRS: HIN		HRS:MIN	SPEED	STOPPED

SAMPLE THROTTLE SUMMARY

```
IPSD 4G(160) 19-May-78 Job EBTR Train 3EBC Run 1 Paqe 7
ELAPSED TIME IN EACH THKOTTLE POSITION
Run number 1 Train 3EBC
From Habart Yard to Barstow via A, T, & Santa Fe
Locomotive consist SD45 SD45 SD45 SD45
```

THROTTLE POSITION	$\begin{gathered} \text { \% OF RATED } \\ \text { H. P. AVAILABLE } \end{gathered}$		ELAPSED TIME		男	$\begin{aligned} & \text { OF TOTAL } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { FUEL } \\ & \text { USED } \end{aligned}$	
BRAKE	0.	0 hr	16.08	min		10.44\%	6.43	qai
1	0.-5.	0 hr	0.00	min		0.00\%	0.00	qal
2	5.-12.	0 hr	2.43	min		1. 58%	2.68	qal
3	12.-31.	0 hr	35.23	min		22.87\%	78.99	qal
4	31.-46.	0 hr	15.31	\min		9.94\%	85.96	qal
5	46.-59.	0 hr	0.66	min		0.43\%	4.50	qal
6	59.-74.	0 hr	4.69	四in		3.04\%	38.09	ga1
7	74.-89.	0 hr	17.97	min		11.67\%	197.63	qal
8	89.-100.	1 hr	0.66	min		39.38\%	789.12	qal
IDIE	0.	0 hr	1.00	rain		0.65 \%	0.40	qal
TOMAL		2 hr	34.03	min		100.00\%	1203.81	qal

SAMPIEVEIOCTTY SBMBARY

```
TPSD 4G(160) 19-4ay-78 Job EBGR Train 3EBC Run 1 Page . 8
    EEAPSED TIME IN EACY VELOCITY RANGE
        Run number 1, Train 3EBC
    From Hobart Yard to Barstow via A. T. & Santa Fe
    Iocomotive consist SD45 SD45 SD45 SD45
```


SAMPIE TPS OUTPOT

SAMPLE SUMEARY PRINTOUT

SAMPIE DETAII PRIMTOUT

SAMPLE TONNAGE RATING REPORT

IMDEX

```
Acceleration * . . 6. 13. 15,21
Acceleration table ....28
Acceleration, rotational . 22
Accurac# 0. . & . . . 15
Aahesion . . . . . . 5
AdBesion limit ...... . . . % 
Administrator . . . . . 25
Aeradymamic resistance . . 3 to 4. 18 to 19
Batch Control ...... 26
Bearing resistamce . . 4. 18
Blocks . . . . . . . 13
Brake pipe propagacioq. . 10. 24
```



```
Braking . . . . . . . 10, 13, 15, 23
Braking force . . . . 23 to 24
Bracing ratio . . E. . . 23
Canadian National . . . . 9
Car 1&brary data base . . 11
Case upperflower .... 28
cosc . . . . . . . 9
Conmands . . . . . 25. 29
Core reguirements * . . 25
CPD time . . . . . 26. 28
Crevekchaces . . . . 12
Curvature resistance . . 4. 18
Data base TPS library . . 26
Davis Egalation . . . . 4 to 5
```



```
Deceleration . * . . 13; 15g 22
DECSystem-10 . . . . 25
Defautt . . . . 0. . . . 6
Defacit
    Iesistance egalation... 8
    velocity increaent . . 9
Delays . . . . . . 12
Detail Prigtont . . . 10, 27to 28
Disk blocks ! . . . 25
Distance
    acceleration . . . 21
    braking . . . . . 24
    deceleration . . . 22
DSK: . . . . . . . 27
```

等-
Dynamic braking 11
Erie Lackawanna 9
Error messaqes 28
File names 27
Flange resistance 4. 18
Force 21
porce, brakinq 23
Fortran 25
Priction. brake shoe 10
Gradient resistance. 4. 18
Graphical output 28
Harseponer 5
Input Data File 27 to 28
Iteration 13. 15
Iterative velocity increment 13.15
Job 7
Job name 27
Library data base 26
Limitations 11
Locomotive
standard 26
Loq file 28
LOGIN 25
Look-ahead 10
Lover case 28
Monitor commands 25. 28
Multiple-unit trains 7
Narrow paper 28
Newtonian lans of motion 4.6. 16, 21
Notch. throttle 24
output 6. 27
plot Data output 28
plotting 28
Pover 5
printing output eiles 28
printout 27 to 28
propagation brake pipe 10. 24
Resistance equations 8
Resistance. train 18
Response time 26
Rollina resistance ... 4 18
Rotational acceleration 22
Route
seqments 2
Run cycle 13
Ran Samang 27 to 28
Scheduling 12
speed lizit 10
Speed Iimit，arifificial 15
Standard Locoaotizes 26
Standard Through Route 26
Sumany printout 10， 27 to 28
Table output 28
Temporary disk files 25
Throttle position 24
Throttle position Sumary 27
Throwg Route 26
Time
acceleration 22
braking 24
deceleration 22
TOFC 3． 9
Tonnage Rating Report 27
Totten．A．I． 9
TPS Administrator 25
TPS job dame 27
TPS Library 26
TPS．SAT 25
TPSA 25
TPSB 25
TPSC 25
Track dat 2． 7
Tractive effort 5，7，11，21，2多，27
Irain data 7
Train resistance 4． 8
Tuthill。J。 8
Upper case 28
USer＇s manal 29
Velocity increnent 13． 15
Velocity initialization 11
Felocity hange Summary 28
Wide paper 28
indth；oatput paper 28
おind 11

[^0]: * American Railmay Engineering association, mata tanual for Railway Engineering", Chapter 16, Part 2, 1970.

[^1]: ＊A．I．Totter masistamoe of inght peight Passenger

[^2]: * American Railway Engineerinq Association, maEA Manual for Railway Bnqineering", Chapter 16, Part 2, "Train Performance". 1970. paqe 16-2-3.

